Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Clin Exp Immunol ; 212(3): 262-275, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869729

RESUMO

T cells play key protective but also pathogenic roles in COVID-19. We studied the expression of long non-coding RNAs (lncRNAs) in COVID-19 T-cell transcriptomes by integrating previously published single-cell RNA sequencing datasets. The long intergenic non-coding RNA MALAT1 was the most highly transcribed lncRNA in T cells, with Th1 cells demonstrating the lowest and CD8+ resident memory cells the highest MALAT1 expression, amongst CD4+ and CD8+ T-cells populations, respectively. We then identified gene signatures that covaried with MALAT1 in single T cells. A significantly higher number of transcripts correlated negatively with MALAT1 than those that correlated. Enriched functional annotations of the MALAT1- anti-correlating gene signature included processes associated with T-cell activation such as cell division, oxidative phosphorylation, and response to cytokine. The MALAT1 anti-correlating gene signature shared by both CD4+ and CD8+ T-cells marked dividing T cells in both the lung and blood of COVID-19 patients. Focussing on the tissue, we used an independent patient cohort of post-mortem COVID-19 lung samples and demonstrated that MALAT1 suppression was indeed a marker of MKI67+ proliferating CD8+ T cells. Our results reveal MALAT1 suppression and its associated gene signature are a hallmark of human proliferating T cells.


Assuntos
COVID-19 , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Baixo , Proliferação de Células/genética , COVID-19/genética , Linfócitos T CD8-Positivos/metabolismo
3.
J Clin Pathol ; 76(8): 561-565, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36894313

RESUMO

Diffuse alveolar damage (DAD) is the histological expression of acute respiratory distress syndrome and characterises lung pathology due to infection with SARS-CoV-2, and other respiratory pathogens of clinical significance. DAD reflects a time-dependent immunopathological process, progressing from an early/exudative stage through to an organising/fibrotic stage, yet within an individual these different stages of DAD may coexist. Understanding the progression of DAD is central to the development of new therapeutics to limit progressive lung damage. Here, we applied highly multiplexed spatial protein profiling to autopsy lung tissues derived from 27 patients who died from COVID-19 and identified a protein signature (ARG1, CD127, GZMB, IDO1, Ki67, phospho-PRAS40 (T246) and VISTA) that distinguishes early DAD from late DAD with good predictive accuracy. These proteins warrant further investigation as potential regulators of DAD progression.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , COVID-19/diagnóstico , COVID-19/patologia , SARS-CoV-2 , Pulmão/patologia , Síndrome do Desconforto Respiratório/patologia , Autopsia
4.
J Psychosom Res ; 165: 111121, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549074

RESUMO

OBJECTIVE: To date, there have been no reviews bringing together evidence on the clinical management of functional neurological disorder (FND) and patients', caregivers', and healthcare workers' experiences. This review provides an overview of the literature focused on the clinical management of FND. METHODS: Four databases were searched, and a consultation exercise was conducted to retrieve relevant records dated from September 2010 to September 2020. Articles documenting diagnostic methods, treatments or interventions, or the experiences and perspectives of patients and healthcare workers in the clinical management of FND were included. RESULTS: In total, 2756 records were retrieved, with 162 included in this review. The diagnostic methods reported predominantly included positive clinical signs, v-EEG and EEG. Psychological treatments and medication were the most reported treatments. Mixed findings of the effectiveness of CBT were found. Haloperidol, physiotherapy and scripted diagnosis were found to be effective in reducing FND symptoms. Several facilitators and barriers for patients accessing treatment for FND were reported. CONCLUSION: The literature describing the clinical management for FND has increased considerably in recent times. A wide variety of diagnostic tools and treatments and interventions were found, with more focus being placed on tests that confirm a diagnosis than 'rule-out' tests. The main treatment type found in this review was medication. This review revealed that there is a lack of high-quality evidence and reflects the need for official clinical guidelines for FND, providing healthcare workers and patients the support needed to navigate the process to diagnose and manage FND.


Assuntos
Transtorno Conversivo , Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/psicologia , Transtorno Conversivo/diagnóstico , Pessoal de Saúde
5.
Wellcome Open Res ; 7: 29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072059

RESUMO

Background: Despite extensive work on macrophage heterogeneity, the mechanisms driving activation induced heterogeneity (AIH) in macrophages remain poorly understood. Here, we aimed to develop mathematical models to explore theoretical cellular states underpinning the empirically observed responses of macrophages following lipopolysaccharide (LPS) challenge. Methods: We obtained empirical data following primary and secondary responses to LPS in two in vitro cellular models (bone marrow-derived macrophages or BMDMs, and RAW 264.7 cells) and single-cell protein measurements for four key inflammatory mediators: TNF, IL-6, pro-IL-1ß, and NOS2, and used mathematical modelling to understand heterogeneity. Results: For these four factors, we showed that macrophage community AIH is dependent on LPS dose and that altered AIH kinetics in macrophages responding to a second LPS challenge underpin hypo-responsiveness to LPS. These empirical data can be explained by a mathematical three-state model including negative, positive, and non-responsive states (NRS), but they are also compatible with a four-state model that includes distinct reversibly NRS and non-responsive permanently states (NRPS). Our mathematical model, termed NoRM (Non-Responsive Macrophage) model identifies similarities and differences between BMDM and RAW 264.7 cell responses. In both cell types, transition rates between states in the NoRM model are distinct for each of the tested proteins and, crucially, macrophage hypo-responsiveness is underpinned by changes in transition rates to and from NRS. Conclusions: Overall, we provide a mathematical model for studying macrophage ecology and community dynamics that can be used to elucidate the role of phenotypically negative macrophage populations in AIH and, primary and secondary responses to LPS.

7.
Front Cell Infect Microbiol ; 12: 826039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265535

RESUMO

Visceral leishmaniasis caused by Leishmania (Leishmania) infantum in Latin America progress with hepatosplenomegaly, pancytopenia, hypergammaglobulinemia, and weight loss and maybe lethal mainly in untreated cases. miRNAs are important regulators of immune and inflammatory gene expression, but their mechanisms of action and their relationship to pathogenesis in leishmaniasis are not well understood. In the present study, we sought to quantify changes in miRNAs associated with immune and inflammatory pathways using the L. (L.) infantum promastigote infected- human monocytic THP-1 cell model and plasma from patients with visceral leishmaniasis. We identified differentially expressed miRNAs in infected THP-1 cells compared with non-infected cells using qPCR arrays. These miRNAs were submitted to in silico analysis, revealing targets within functional pathways associated with TGF-ß, chemokines, glucose metabolism, inflammation, apoptosis, and cell signaling. In parallel, we identified differentially expressed miRNAs in active visceral leishmaniasis patient plasma compared with endemic healthy controls. In silico analysis of these data indicated different predicted targets within the TGF-ß, TLR4, IGF-I, chemokine, and HIF1α pathways. Only a small number of miRNAs were commonly identified in these two datasets, notably with miR-548d-3p being up-regulated in both conditions. To evaluate the potential biological role of miR-548d-3p, we transiently transfected a miR-548d-3p inhibitor into L. (L.) infantum infected-THP-1 cells, finding that inhibition of miR-548d-3p enhanced parasite growth, likely mediated through reduced levels of MCP-1/CCL2 and nitric oxide production. Further work will be required to determine how miR-548d-3p plays a role in vivo and whether it serves as a potential biomarker of progressive leishmaniasis.


Assuntos
Leishmania infantum , Leishmaniose Visceral , MicroRNAs , Parasitos , Animais , Humanos , Leishmania infantum/genética , Macrófagos , MicroRNAs/genética , Parasitos/genética
8.
J Biol Chem ; 298(3): 101707, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150740

RESUMO

Despite extensive basic and clinical research on immune checkpoint regulatory pathways, little is known about the effects of the ionic tumor microenvironment on immune checkpoint expression and function. Here we describe a mechanistic link between Na+/K+-ATPase (NKA) inhibition and activity of the immune checkpoint protein indoleamine-pyrrole 2',3'-dioxygenase 1 (IDO1). We found that IDO1 was necessary and sufficient for production of kynurenine, a downstream tryptophan metabolite, in cancer cells. We developed a spectrophotometric assay to screen a library of 31 model ion transport-targeting compounds for potential effects on IDO1 function in A549 lung and MDA-MB-231 breast cancer cells. This revealed that the cardiac glycosides ouabain and digoxin inhibited kynurenine production at concentrations that did not affect cell survival. NKA inhibition by ouabain and digoxin resulted in increased intracellular Na+ levels and downregulation of IDO1 mRNA and protein levels, which was consistent with the reduction in kynurenine levels. Knockdown of ATP1A1, the ɑ1 subunit of the NKA and target of cardiac glycosides, increased Na+ levels to a lesser extent than cardiac glycoside treatment and did not affect IDO1 expression. However, ATP1A1 knockdown significantly enhanced the effect of cardiac glycosides on IDO1 expression and kynurenine production. Mechanistically, we show that cardiac glycoside treatment resulted in curtailing the length of phosphorylation-mediated stabilization of STAT1, a transcriptional regulator of IDO1 expression, an effect enhanced by ATP1A1 knockdown. Our findings reveal cross talk between ionic modulation via cardiac glycosides and immune checkpoint protein expression in cancer cells with broad mechanistic and clinical implications.


Assuntos
Glicosídeos Cardíacos , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias , Fator de Transcrição STAT1 , ATPase Trocadora de Sódio-Potássio , Células A549 , Glicosídeos Cardíacos/farmacologia , Linhagem Celular Tumoral , Digoxina/farmacologia , Humanos , Proteínas de Checkpoint Imunológico , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Cinurenina/metabolismo , Neoplasias/patologia , Ouabaína/metabolismo , Ouabaína/farmacologia , Fator de Transcrição STAT1/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
iScience ; 25(1): 103672, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34957382

RESUMO

Inflammatory cytokines and chemokines (CC) drive COVID-19 pathology. Yet, patients with similar circulating CC levels present with different disease severity. Here, we determined 171 microRNAomes from 58 hospitalized COVID-19 patients (Cohort 1) and levels of 25 cytokines and chemokines (CC) in the same samples. Combining microRNA (miRNA) and CC measurements allowed for discrimination of severe cases with greater accuracy than using miRNA or CC levels alone. Severity group-specific associations between miRNAs and COVID-19-associated CC (e.g., IL6, CCL20) or clinical hallmarks of COVID-19 (e.g., neutrophilia, hypoalbuminemia) separated patients with similar CC levels but different disease severity. Analysis of an independent cohort of 108 patients from a different center (Cohort 2) demonstrated feasibility of CC/miRNA profiling in leftover hospital blood samples with similar severe disease CC and miRNA profiles, and revealed CCL20, IL6, IL10, and miR-451a as key correlates of fatal COVID-19. These findings highlight that systemic miRNA/CC networks underpin severe COVID-19.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32865696

RESUMO

Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.


Assuntos
Neoplasias , Membrana Celular/metabolismo , Membrana Celular/patologia , Proliferação de Células , Humanos , Canais Iônicos , Neoplasias/patologia , Transdução de Sinais
11.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34609968

RESUMO

Cutaneous leishmaniasis (CL) is caused by Leishmania donovani in Sri Lanka. Pentavalent antimonials (e.g., sodium stibogluconate [SSG]) remain first-line drugs for CL with no new effective treatments emerging. We studied whole blood and lesion transcriptomes from Sri Lankan patients with CL at presentation and during SSG treatment. From lesions but not whole blood, we identified differential expression of immune-related genes, including immune checkpoint molecules, after onset of treatment. Using spatial profiling and RNA-FISH, we confirmed reduced expression of programmed death-ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO1) proteins on treatment in lesions of a second validation cohort and further demonstrated significantly higher expression of these checkpoint molecules on parasite-infected compared with noninfected lesional CD68+ monocytes and macrophages. Crucially, early reduction in PD-L1 but not IDO1 expression was predictive of rate of clinical cure (HR = 4.88) and occurred in parallel with reduction in parasite load. Our data support a model whereby the initial anti-leishmanial activity of antimonial drugs alleviates checkpoint inhibition on T cells, facilitating immune-drug synergism and clinical cure. Our findings demonstrate that PD-L1 expression can be used as a predictor of rapidity of clinical response to SSG treatment in Sri Lanka and support further evaluation of PD-L1 as a host-directed therapeutic in leishmaniasis.


Assuntos
Antígeno B7-H1/fisiologia , Leishmaniose Cutânea/tratamento farmacológico , Adulto , Gluconato de Antimônio e Sódio/uso terapêutico , Antígeno B7-H1/análise , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Leishmaniose Cutânea/imunologia , Masculino , Adulto Jovem
12.
Brain Behav Immun Health ; 13: 100228, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34589743

RESUMO

BACKGROUND: Conversion disorder/functional neurological disorder (CD/FND) occurs often in neurological settings and can lead to long-term distress, disability and demand on health care services. Systemic low-grade inflammation might play a role, however, the pathogenic mechanism is still unknown. AIM: 1) To explore the feasibility to establish and assess a cohort of CD/FND with motor symptoms, involving persons with lived experience (PPI). 2) To generate proof of concept regarding a possible role for cytokines, microRNA, cortisol levels and neurocognitive symptoms in patients with motor CD/FND. METHOD: Feasibility study. RESULTS: The study showed active involvement of patients despite high clinical illness burden and disability, neurocognitive symptoms, childhood adverse experiences (ACE) and current life events. The study provided valuable knowledge regarding the feasibility of conducting a study in these patients that will inform future study phases. In the sample there were elevated levels of IL6, IL12, IL17A, IFNg, TNFa and VEGF-a, suggesting systemic low-grade inflammation. Also, microRNAs involved in inflammation and vascular inflammation were correlated with TNFa and VEGFa respectively, suggesting proof of concept for an epigenetic mechanism. Owing to the COVID-19 outbreak, the patient sample was limited to 15 patients. CONCLUSION: It is a novelty that this study is conducted in the clinical setting. This innovative, translational study explores stress-related SLI in CD/FND patients and the feasibility of a larger project aiming to develop new treatments for this vulnerable population. Given the positive findings, there is scope to conduct further research into the mechanism of disease in CD/FND.

13.
Noncoding RNA ; 7(3)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34564316

RESUMO

The highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the causative agent of coronavirus disease 2019 (COVID-19) in late 2019, igniting an unprecedented pandemic. A mechanistic picture characterising the acute immunopathological disease in severe COVID-19 is developing. Non-coding RNAs (ncRNAs) constitute the transcribed but un-translated portion of the genome and, until recent decades, have been undiscovered or overlooked. A growing body of research continues to demonstrate their interconnected involvement in the immune response to SARS-CoV-2 and COVID-19 development by regulating several of its pathological hallmarks: cytokine storm syndrome, haemostatic alterations, immune cell recruitment, and vascular dysregulation. There is also keen interest in exploring the possibility of host-virus RNA-RNA and RNA-RBP interactions. Here, we discuss and evaluate evidence demonstrating the involvement of short and long ncRNAs in COVID-19 and use this information to propose hypotheses for future mechanistic and clinical studies.

14.
Front Cell Infect Microbiol ; 11: 687647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178725

RESUMO

American Tegumentary Leishmaniasis (ATL) is an endemic disease in Latin America, mainly caused in Brazil by Leishmania (Viannia) braziliensis. Clinical manifestations vary from mild, localized cutaneous leishmaniasis (CL) to aggressive mucosal disease. The host immune response strongly determines the outcome of infection and pattern of disease. However, the pathogenesis of ATL is not well understood, and host microRNAs (miRNAs) may have a role in this context. In the present study, miRNAs were quantified using qPCR arrays in human monocytic THP-1 cells infected in vitro with L. (V.) braziliensis promastigotes and in plasma from patients with ATL, focusing on inflammatory response-specific miRNAs. Patients with active or self-healed cutaneous leishmaniasis patients, with confirmed parasitological or immunological diagnosis, were compared with healthy controls. Computational target prediction of significantly-altered miRNAs from in vitro L. (V.) braziliensis-infected THP-1 cells revealed predicted targets involved in diverse pathways, including chemokine signaling, inflammatory, cellular proliferation, and tissue repair processes. In plasma, we observed distinct miRNA expression in patients with self-healed and active lesions compared with healthy controls. Some miRNAs dysregulated during THP-1 in vitro infection were also found in plasma from self-healed patients, including miR-548d-3p, which was upregulated in infected THP-1 cells and in plasma from self-healed patients. As miR-548d-3p was predicted to target the chemokine pathway and inflammation is a central to the pathogenesis of ATL, we evaluated the effect of transient transfection of a miR-548d-3p inhibitor on L. (V.) braziliensis infected-THP-1 cells. Inhibition of miR-548d-3p reduced parasite growth early after infection and increased production of MCP1/CCL2, RANTES/CCL5, and IP10/CXCL10. In plasma of self-healed patients, MCP1/CCL2, RANTES/CCL5, and IL-8/CXCL8 concentrations were significantly decreased and MIG/CXCL9 and IP-10/CXCL10 increased compared to patients with active disease. These data suggest that by modulating miRNAs, L. (V.) braziliensis may interfere with chemokine production and hence the inflammatory processes underpinning lesion resolution. Our data suggest miR-548d-3p could be further evaluated as a prognostic marker for ATL and/or as a host-directed therapeutic target.


Assuntos
Leishmania braziliensis , MicroRNAs , Parasitos , Animais , Brasil , Humanos , Inflamação , MicroRNAs/genética
15.
J Immunol ; 204(11): 2949-2960, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321759

RESUMO

Despite extensive mapping of long noncoding RNAs in immune cells, their function in vivo remains poorly understood. In this study, we identify over 100 long noncoding RNAs that are differentially expressed within 24 h of Th1 cell activation. Among those, we show that suppression of Malat1 is a hallmark of CD4+ T cell activation, but its complete deletion results in more potent immune responses to infection. This is because Malat1-/- Th1 and Th2 cells express lower levels of the immunosuppressive cytokine IL-10. In vivo, the reduced CD4+ T cell IL-10 expression in Malat1-/- mice underpins enhanced immunity and pathogen clearance in experimental visceral leishmaniasis (Leishmania donovani) but more severe disease in a model of malaria (Plasmodium chabaudi chabaudi AS). Mechanistically, Malat1 regulates IL-10 through enhancing expression of Maf, a key transcriptional regulator of IL-10 Maf expression correlates with Malat1 in single Ag-specific Th cells from P. chabaudi chabaudi AS-infected mice and is downregulated in Malat1-/- Th1 and Th2 cells. The Malat1 RNA is responsible for these effects, as antisense oligonucleotide-mediated inhibition of Malat1 also suppresses Maf and IL-10 levels. Our results reveal that through promoting expression of the Maf/IL-10 axis in effector Th cells, Malat1 is a nonredundant regulator of mammalian immunity.


Assuntos
Interleucina-10/metabolismo , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Proteínas Proto-Oncogênicas c-maf/metabolismo , RNA Longo não Codificante/genética , Células Th1/imunologia , Células Th2/imunologia , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Imunidade/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-maf/genética , Regulação para Cima
16.
Wellcome Open Res ; 5: 80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34104801

RESUMO

Background: More than 2 million people per year are treated for surgical wounds in the UK.  Over a quarter of these wounds are estimated to heal by secondary intention (from the "bottom up") resulting in further complications and requiring increased healthcare resources. Identification of microbiological or host biomarkers that can predict healing outcomes may help to optimize the management of surgical wounds healing by secondary intention. However, the microbial and host factor heterogeneity amongst this diverse population is completely unexplored. Methods: We demonstrate feasibility of determining presence and levels of wound microbes and systemic host factors in an inception cohort of 54 people presenting with surgical wounds healing by secondary intention, who were subsequently followed-up for a period of 12-21 months. We present descriptive statistics for plasma levels of inflammatory, angiogenic cytokines and microRNAs, and we identify a range of wound colonizing microbes. We tentatively explore association with healing aiming to generate hypotheses for future research. Results: We report a potential correlation between poor healing outcomes and elevated interleukin (IL)-6 plasma levels at presentation (ρ=0.13) which requires confirmation.   Conclusions: This study demonstrates the degree of biological heterogeneity amongst people with surgical wounds healing by secondary intention and proves the feasibility of embedding a biomarker discovery study in a cohort study in surgical wounds. Our results are essential for designing large biomarker discovery studies to further investigate the potential validity of circulating IL-6 or other factors as novel predictive biomarkers of healing for surgical wounds healing by secondary intention.

17.
Noncoding RNA ; 5(3)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336952

RESUMO

The non-coding genome has previously been regarded as "junk" DNA; however, emerging evidence suggests that the non-coding genome accounts for some of the greater biological complexity observed in mammals. Research into long non-coding RNAs (lncRNAs) has gathered speed in recent years, and a growing body of evidence has implicated lncRNAs in a vast range of cellular functions including gene regulation, chromosome organisation and splicing. T helper cells offer an ideal platform for the study of lncRNAs given they function as part of a complex cellular network and undergo remarkable and finely regulated gene expression changes upon antigenic stimulation. Using various knock down and RNA interaction studies several lncRNAs have been shown to be crucial for T helper cell differentiation, activation and function. Given that RNA targeting therapeutics are rapidly gaining attention, further understanding the mechanistic role of lncRNAs in a T helper context is an exciting area of research, as it may unearth a wide range of new candidate targets for treatment of CD4+ mediated pathologies.

18.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833344

RESUMO

Determining the mechanisms that distinguish protective immunity from pathological chronic inflammation remains a fundamental challenge. miR-132 has been shown to play largely immunoregulatory roles in immunity; however, its role in CD4+ T cell function is poorly understood. Here, we show that CD4+ T cells express high levels of miR-132 and that T cell activation leads to miR-132 up-regulation. The transcriptomic hallmark of splenic CD4+ T cells lacking the miR-132/212 cluster during chronic infection is an increase in mRNA levels of ribosomal protein (RP) genes. BTAF1, a co-factor of B-TFIID and novel miR-132/212-3p target, and p300 contribute towards miR-132/212-mediated regulation of RP transcription. Following infection with Leishmania donovani, miR-132-/- CD4+ T cells display enhanced expression of IL-10 and decreased IFNγ. This is associated with reduced hepatosplenomegaly and enhanced pathogen load. The enhanced IL-10 expression in miR-132-/- Th1 cells is recapitulated in vitro following treatment with phenylephrine, a drug reported to promote ribosome synthesis. Our results uncover that miR-132/212-mediated regulation of RP expression is critical for optimal CD4+ T cell activation and protective immunity against pathogens.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Animais , Sítios de Ligação , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Ligação Proteica , Baço/imunologia , Baço/metabolismo , Baço/microbiologia , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
19.
Wellcome Open Res ; 4: 198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31976381

RESUMO

Background: Liposomal amphotericin B (AmBisome®) as a treatment modality for visceral leishmaniasis (VL) has had significant impact on patient care in some but not all regions where VL is endemic.  As the mode of action of AmBisome® in vivo is poorly understood, we compared the tissue-specific transcriptome in drug-treated vs untreated mice with experimental VL.    Methods:  BALB/c mice infected with L. donovani were treated with 8mg/kg AmBisome®, resulting in parasite elimination from liver and spleen over a 7-day period. At day 1 and day 7 post treatment (R x+1 and R x+7), transcriptomic profiling was performed on spleen and liver tissue from treated and untreated mice and uninfected mice.  BALB/c mice infected with M. bovis BCG (an organism resistant to amphotericin B) were analysed to distinguish between direct effects of AmBisome® and those secondary to parasite death.   Results: AmBisome® treatment lead to rapid parasitological clearance.  At R x+1, spleen and liver displayed only 46 and 88 differentially expressed (DE) genes (P<0.05; 2-fold change) respectively. In liver, significant enrichment was seen for pathways associated with TNF, fatty acids and sterol biosynthesis.  At R x+7, the number of DE genes was increased (spleen, 113; liver 400).  In spleen, these included many immune related genes known to be involved in anti-leishmanial immunity. In liver, changes in transcriptome were largely accounted for by loss of granulomas.   PCA analysis indicated that treatment only partially restored homeostasis.  Analysis of BCG-infected mice treated with AmBisome® revealed a pattern of immune modulation mainly targeting macrophage function.   Conclusions: Our data indicate that the tissue response to AmBisome® treatment varies between target organs and that full restoration of homeostasis is not achieved at parasitological cure.  The pathways required to restore homeostasis deserve fuller attention, to understand mechanisms associated with treatment failure and relapse and to promote more rapid restoration of immune competence.

20.
EMBO Mol Med ; 10(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29930174

RESUMO

The adaptive cellular response to low oxygen tensions is mediated by the hypoxia-inducible factors (HIFs), a family of heterodimeric transcription factors composed of HIF-α and HIF-ß subunits. Prolonged HIF expression is a key contributor to cellular transformation, tumorigenesis and metastasis. As such, HIF degradation under hypoxic conditions is an essential homeostatic and tumour-suppressive mechanism. LIMD1 complexes with PHD2 and VHL in physiological oxygen levels (normoxia) to facilitate proteasomal degradation of the HIF-α subunit. Here, we identify LIMD1 as a HIF-1 target gene, which mediates a previously uncharacterised, negative regulatory feedback mechanism for hypoxic HIF-α degradation by modulating PHD2-LIMD1-VHL complex formation. Hypoxic induction of LIMD1 expression results in increased HIF-α protein degradation, inhibiting HIF-1 target gene expression, tumour growth and vascularisation. Furthermore, we report that copy number variation at the LIMD1 locus occurs in 47.1% of lung adenocarcinoma patients, correlates with enhanced expression of a HIF target gene signature and is a negative prognostic indicator. Taken together, our data open a new field of research into the aetiology, diagnosis and prognosis of LIMD1-negative lung cancers.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...